Expression Relaxations ====================== Bilinear Terms -------------- Given the bilinear term :math:`xy` over the domain :math:`[x^L, x^U] \times [y^L, y^U]`, a convex underestimator by introducing a new variable :math:`w` that satisfies the following relationship: .. math:: w = \max{\{x^L y + y^L x - x^L y^L; x^U y + y^U x - x^U y^U\}} This expression can be included in the minimization problem as [1]: .. math:: \begin{align} w \geq & x^Ly + y^Lx -x^Ly^L \\ w \geq & x^Uy + y^Ux - x^Uy^U \\ w \geq & x^Uy + y^Lx - x^Uy^L \\ w \geq & x^Ly + y^Ux - x^Ly^U \end{align} aBB Underestimator ------------------ Given a nonconvex expression :math:`f(x)`, a convex underestimator :math:`\ell(x)` can be defined as [2]: .. math:: \ell(x) = f(x) + \sum_i \alpha_i (x_i^L - x_i)(x_i^U - x_i) where .. math:: \alpha_i \geq \max{\{0, -\frac{1}{2} \min_{x} \lambda(x) \}} where :math:`\lambda(x)` are the eigenvalues of the Hessian matrix of :math:`f(x)`. References ---------- [1] McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems. Mathematical Programming, 10(1), 147–175. https://doi.org/10.1007/BF01580665 [2] Androulakis, I. P., Maranas, C. D., & Floudas, C. A. (1995). αBB: A global optimization method for general constrained nonconvex problems. Journal of Global Optimization, 7(4), 337–363. https://doi.org/10.1007/BF01099647